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Abstract Solving multicommodity capacitated network design problems is a hard
task that requires the use of several strategies like relaxing some constraints and
strengthening the model with valid inequalities. In this paper, we compare three sets
of inequalities that have been widely used in this context: Benders, metric and cutset
inequalities. We show that Benders inequalities associated to extreme rays are met-
ric inequalities. We also show how to strengthen Benders inequalities associated to
non-extreme rays to obtain metric inequalities. We show that cutset inequalities are
Benders inequalities, but not necessarily metric inequalities. We give a necessary and
sufficient condition for a cutset inequality to be a metric inequality. Computational
experiments show the effectiveness of strengthening Benders and cutset inequalities
to obtain metric inequalities.
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1 Introduction

Network design problems have received significant attention in the literature for more
than two decades, as evidenced by numerous reviews [3, 12, 18, 19]. In particu-
lar, multicommodity capacitated network design problems have been widely studied
[1, 2, 9, 15, 21].

A typical network design problem is defined over a directed network G =
(N,A,K) with node set N , arc set A, and commodity set K , each commodity k being
represented by a triplet (O(k),D(k), dk), where O(k) is the origin node, D(k) is the
destination node and dk > 0 is the demand to be routed between O(k) and D(k). For
each commodity k, we assume that there exists at least one path from O(k) to D(k)

and we define the connected subnetwork Gk = (Nk,Ak) that contains only nodes
and arcs that belong to some path from O(k) to D(k). Given a nonconvex objective
function, the problem is to find a minimum cost solution that satisfies the demands
for all commodities, often subject to additional constraints, such as budgetary limits
and topological restrictions.

In this context, many solution algorithms make use of the multicommodity network
flow subproblem: given a capacity vector ω = (ωij )(i,j)∈A ≥ 0, we wish to identify a
multicommodity flow vector x = (xk

ij )
k∈K
(i,j)∈Ak ≥ 0 satisfying

∑

j∈Nk
i (+)

xk
ij −

∑

j∈Nk
i (−)

xk
ji =

⎧
⎨

⎩

dk, i = O(k),

0, i �= O(k),D(k), ∀i ∈ Nk, ∀k ∈ K,

−dk, i = D(k),

(1)

∑

k∈K

xk
ij ≤ ωij , ∀(i, j) ∈ A, (2)

where Nk
i (+) = {j ∈ Nk|(i, j) ∈ Ak} and Nk

i (−) = {j ∈ Nk|(j, i) ∈ Ak}. In this
formulation, the value ωij represents whether or not a connection is established on
arc (i, j), and what is the capacity available to carry the demands through this arc. We
say that ω is a feasible capacity vector if and only if there exists a multicommodity
flow x ≥ 0 satisfying (1) and (2).

For each commodity k, one of the flow conservation equations (1) is redun-
dant. Hence, if we introduce dual variables π = (πk

i )k∈K
i∈Nk associated to these equa-

tions, we can assume πk
O(k) = 0 for each k ∈ K . Introducing also dual variables

α = (αij )(i,j)∈A ≥ 0 associated to the capacity constraints (2), we have, by strong
duality in linear programming, that ω is feasible if and only if the following dual
problem, D(ω), is bounded:

Z(ω) = Maximize
∑

k∈K

dkπ
k
D(k) −

∑

(i,j)∈A

ωijαij (3)

subject to πk
j − πk

i − αij ≤ 0, ∀(i, j) ∈ Ak, ∀k ∈ K. (4)

Note that the feasible domain for D(ω), PD , is a full-dimensional polyhedral cone.
Any solution in PD is called a ray and we know, by Minkowski’s theorem, that every
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such ray can be expressed as a nonnegative linear combination of the extreme rays
of PD (a ray is extreme if we cannot express it as the sum of other rays). We denote
by E(PD) the set of extreme rays of PD .

In this paper, we study the relationships between four well-known classes of in-
equalities characterizing the feasibility of a capacity vector ω:

• Benders inequalities. The dual problem D(ω) is bounded if and only if Z(ω) ≤ 0
if and only if

∑

k∈K

dkπ
k
D(k) −

∑

(i,j)∈A

ωijαij ≤ 0, ∀(π,α) ∈ PD. (5)

We call these the Benders inequalities, since they are used as cuts in the famous
Benders decomposition algorithm [5]. In case α = 0, we obtain a so-called trivial
Benders inequality.

• Benders inequalities associated to extreme rays. Since any ray can be expressed
as a nonnegative linear combination of the extreme rays of PD , we can restrict
Benders inequalities to the set of extreme rays and yet obtain a characterization of
the feasibility of ω:

∑

k∈K

dkπ
k
D(k) −

∑

(i,j)∈A

ωijαij ≤ 0, ∀(π,α) ∈ E(PD). (6)

• Metric inequalities. The dual problem, D(ω), is bounded if and only if, for any
α ≥ 0, we have

∑

(i,j)∈A

ωijαij ≥ max

{∑

k∈K

dkπ
k
D(k)|πk

j − πk
i ≤ αij , ∀(i, j) ∈ Ak, ∀k ∈ K

}
. (7)

The problem on the right-hand side of this inequality is the dual of a shortest path
problem, with arc distances equal to α ≥ 0. Assume we solve this problem and
obtain the shortest path lengths π(α) = (πk

i (α))k∈K
i∈Nk between O(k) and i, for each

node i ∈ Nk and commodity k ∈ K . We then have the following metric inequali-
ties:

∑

k∈K

dkπ
k
D(k)(α) −

∑

(i,j)∈A

ωijαij ≤ 0, ∀α ≥ 0. (8)

Note that (π(α),α) ∈ PD ; hence, metric inequalities are a special case of Benders
inequalities.

• Cutset inequalities. Let S ⊂ N be a non-empty subset of N and S = N \ S its
complement; (S,S) is a cutset, i.e., the set of arcs that connect a node in S to a
node in S. Also, let K(S,S) ⊆ K be the set of commodities having their origin in S

and their destination in S and d(S,S) = ∑
k∈K(S,S) d

k . We then define the following
cutset inequalities:

∑

(i,j)∈(S,S)

ωij ≥ d(S,S), ∀S ⊂ N, S �= ∅. (9)
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These inequalities simply mean that there should be enough capacity on the arcs of
any cutset to satisfy the demands that must be routed through that cutset. They are
often used in branch-and-cut algorithms for multicommodity capacitated network
design problems [4, 6].

Clearly, cutset inequalities are necessary for a capacity vector ω to be feasible,
but it is well-known that they are not sufficient in general (they are in the single-
commodity case, due to the max flow-min cut theorem). As we have just seen, Ben-
ders inequalities, Benders inequalities associated to extreme rays, and metric inequal-
ities are both necessary and sufficient to characterize a feasible capacity vector ω. In
this sense, the three classes of inequalities are equivalent. However, when it comes
to use these inequalities in a solution algorithm, the question of which class to use is
not necessarily a trivial one, because even if one class of inequalities is a subclass of
another, it might be easier to generate inequalities in the larger class. For example,
in a Benders decomposition algorithm, generating only Benders cuts associated to
extreme rays is not always better than using other Benders inequalities, as suggested
by our computational results, presented in Sect. 4.

To compare inequalities, we use the standard dominance criterion. Given a poly-
hedron P = {u|Au ≤ b} and two valid inequalities λ1u ≤ λ1

0 and λ2u ≤ λ2
0 for P , we

say that the first dominates the second if λ2u ≤ λ1u, ∀u ∈ P and λ1
0 ≤ λ2

0. Further-
more, if there exists u ∈ P such that λ2u < λ1u, the dominance is strict.

In this paper, we show the following properties:

1. Every Benders inequality associated to an extreme ray is a metric inequality.
2. For a given α ≥ 0, the corresponding metric inequality dominates all Benders in-

equalities associated to that particular α; as a consequence, any Benders inequal-
ity can be strenghtened to a metric inequality by solving the shortest path problem
in (7).

3. Cutset inequalities are a subclass of Benders inequalities, but are not necessarily
metric inequalities (contrary to a common belief).

4. We give a necessary and sufficient condition for a cutset inequality to be a metric
inequality.

Our computational experiments, performed on instances of the multicommodity
capacitated fixed-charge network design problem, illustrate the following results:

1. On many instances, we show that a large proportion of cutset inequalities can be
strenghtened to metric inequalities.

2. For a standard Benders decomposition algorithm, we show that restricting the
method to Benders inequalities associated to extreme rays is not necessarily more
efficient than generating cuts associated to any ray, extreme or not (contrary to a
common belief).

3. For the same algorithm, we show, however, that strengthening Benders cuts to gen-
erate only metric inequalities is computationally more efficient than using Benders
inequalities generated by a linear programming solver.

This paper is organized as follows. In Sect. 2, we present our results concerning
metric inequalities, comparing them to Benders inequalities. Section 3 is dedicated to
our developments on cutset inequalities. Section 4 presents our computational results,
while Sect. 5 ends this paper with some conclusions.
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2 Benders and metric inequalities

In this section, we show two results that allow us to compare Benders and metric
inequalities, and we illustrate these results on a simple example.

We already know that Benders inequalities associated to extreme rays is a subclass
of Benders inequalities. Our first result states that Benders inequalities associated to
extreme rays is also a subclass of metric inequalities. To prove this result, we use the
following simple lemma.

Lemma 1 If (π,α) is a ray of PD , then πk
h ≤ πk

h(α),∀h ∈ Nk,∀k ∈ K .

Proof Let k ∈ K and P k
h a shortest path (with respect to α) from O(k) to h ∈ Nk . We

then have πk
h = ∑

(i,j)∈Pk
h
(πk

j − πk
i ) ≤ ∑

(i,j)∈Pk
h
αij = πk

h(α). �

Proposition 1 Any non-trivial Benders inequality associated to an extreme ray is a
metric inequality.

Proof Let (π,α) an extreme ray of PD associated to a non-trivial Benders inequality.
Assume that this inequality is not a metric inequality. This implies that there exists
some commodity l ∈ K such that πl

D(l) �= πl
D(l)(α). By Lemma 1, we must have

πl
D(l) < πl

D(l)(α). This implies that, on every path P l from O(l) to D(l), there exists

an arc (i, j) such that πl
j − πl

i − αij < 0, called a non-binding arc; otherwise, we

would have a path Ql such that πl
j − πl

i − αij = 0 on every arc (i, j) ∈ Ql , and

πl
D(l) = ∑

(i,j)∈Ql (π
l
j − πl

i ) = ∑
(i,j)∈Ql αij ≥ πl

D(l)(α), a contradiction.

Using this property, we now construct a set T l ⊂ Nl as follows: we visit each path
P l from O(l) to D(l), starting from O(l), until we encounter the first non-binding
arc (i, j); we then add to T l (initialized to ∅) all nodes on P l from j to D(l). Clearly,
O(l) /∈ T l and D(l) ∈ T l , i.e., T l defines a cutset. Moreover, it is not possible to have
an arc (i, j) such that i ∈ T l and j /∈ T l . Indeed, i ∈ T l implies that there is a path
from O(l) to i containing a non-binding arc and j ∈ Nl implies that there is a path
from j to D(l). Connecting these two paths through arc (i, j), we would obtain a
path from O(l) to D(l) containing a non-binding arc preceding node j . Hence, if
i ∈ T l , we must have j ∈ T l .

Let δ = mini /∈T l,j∈T l {−πl
j + πl

i + αij } > 0, and define (π,α) and (π̃ ,0) as fol-
lows:

π = π , except for πl
i = πl

i + δ, ∀i ∈ T l ;
π̃ = 0, except for π̃ l

i = −δ, ∀i ∈ T l .

We then have:

(1) (π,α) is a ray, since for any (i, j) ∈ Al , there are three possible cases:
(a) i ∈ T l and j ∈ T l : πl

j − πl
i − αij = (πl

j + δ) − (πl
i + δ) − αij = πl

j − πl
i −

αij ≤ 0;
(b) i /∈ T l and j /∈ T l : πl

j − πl
i − αij = πl

j − πl
i − αij ≤ 0;
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(c) i /∈ T l and j ∈ T l : πl
j − πl

i − αij = (πl
j + δ) − πl

i − αij ≤ πl
j + (−πl

j +
πl

i + αij ) − πl
i − αij = 0.

(2) (π̃ ,0) is a ray, since for any (i, j) ∈ Al , there are three possible cases:
(a) i ∈ T l and j ∈ T l : π̃ l

j − π̃ l
i = −δ − (−δ) = 0;

(b) i /∈ T l and j /∈ T l : π̃ l
j − π̃ l

i = 0 − 0 = 0;

(c) i /∈ T l and j ∈ T l : π̃ l
j − π̃ l

i = −δ − 0 < 0.
(3) (π,α) = (π,α) + (π̃ ,0), which contradicts the hypothesis that (π,α) is an ex-

treme ray. �

Even though Benders inequalities associated to extreme rays subsume the two
other classes of inequalities, some solution algorithms might generate Benders in-
equalities that are not necessarily associated to extreme rays. If we let (π,α) a ray
(not necessarily extreme) associated to a Benders inequality, one might solve a short-
est path problem with respect to α and derive a metric inequality associated to the ray
(π(α),α). Our next result states that we then obtain a metric inequality that always
dominates the original Benders inequality.

Proposition 2 Any Benders inequality associated to ray (π,α) is dominated by the
metric inequality associated to ray (π(α),α). The dominance is strict if and only if
there exists l ∈ K such that πl

D(l) < πl
D(l)(α).

Proof Using the definition of dominance given in the introduction, it suffices to show
that

∑

k∈K

dkπ
k
D(k) −

∑

(i,j)∈A

ωijαij ≤
∑

k∈K

dkπ
k
D(k)(α) −

∑

(i,j)∈A

ωijαij .

But, this is immediate since, for each k ∈ K , dk > 0 and πk
D(k) ≤ πk

D(k)(α), by
Lemma 1. It also follows immediately that the dominance is strict if and only if there
exists l ∈ K such that πl

D(l) < πl
D(l)(α). �

Example 1 Figure 1 shows a network with three vertices, two arcs and two commodi-
ties, with demands d1 and d2, having their origins at node 1 and their destinations at
nodes 2 and 3, respectively. Once we fix to 0 the dual variables associated to re-
dundant constraints of the multicommodity flow subproblem (i.e., flow conservation
equations for commodity 1, nodes 1 and 3, and for commodity 2, nodes 1 and 2) we
obtain the following full-dimensional dual polyhedron:

PD = {(π,α) = ((π1
2 ,π2

3 ), (α12, α13))|π1
2 − α12 ≤ 0, π2

3 − α13 ≤ 0, α12, α13 ≥ 0}.

Fig. 1 Network of Example 1



Benders, metric and cutset inequalities for multicommodity 377

We can easily enumerate the extreme rays of PD :

(π(1), α(1)) = ((1,0), (1,0));
(π(2), α(2)) = ((0,1), (0,1));
(π(3), α(3)) = ((−1,0), (0,0));
(π(4), α(4)) = ((0,−1), (0,0)).

There are two non-trivial Benders inequalities associated to these extreme rays:

ω12 ≥ d1 (associated to (π(1), α(1)));
ω13 ≥ d2 (associated to (π(2), α(2))).

If we take α = (1,1), we obtain the metric inequality ω12 +ω13 ≥ d1 +d2, associ-
ated to the ray ((1,1), (1,1)) = (π(1), α(1)) + (π(2), α(2)), i.e., this metric inequal-
ity is obtained by aggregation of the two non-trivial Benders inequalities associated to
extreme rays. In other words, the combination of the two Benders inequalities associ-
ated to extreme rays dominates this metric inequality, but none of them, individually,
dominates it. Note that there are other Benders inequalities associated to α = (1,1),
for instance ω12 +ω13 ≥ d1 (associated to the ray ((1,0), (1,1))) and ω12 +ω13 ≥ d2
(associated to the ray ((0,1), (1,1))), which are not metric inequalities and are dom-
inated by ω12 + ω13 ≥ d1 + d2.

Suppose we perform two iterative solution algorithms. The first one generates, at
each iteration, one Benders inequality associated to an extreme ray. The second al-
gorithm generates, at each iteration, one Benders inequality and strengthens it to a
metric inequality by solving a shortest path problem with α fixed at its value in the
generated Benders inequality. Assume that, at some iteration, both algorithms solve
the multicommodity flow subproblem with ω satisfying ω12 < d1 and ω13 < d2. Also
assume that d2 − ω13 > d1 − ω12. Suppose the first algorithm generates the Ben-
ders inequality ω13 ≥ d2. The second algorithm first generates the Benders inequality
ω12 + ω13 ≥ d2 and then strengthens it to the metric inequality ω12 + ω13 ≥ d1 + d2.
This inequality is violated by ω by the quantity (d2 − ω13) + (d1 − ω12) > d2 − ω13,
the amount by which the Benders inequality ω13 ≥ d2 is violated.

This example shows that, even if we select the best Benders inequality associ-
ated to an extreme ray, we might obtain a better metric inequality associated to a
non-extreme ray. Thus, even though we can restrict ourselves to Benders inequali-
ties associated to extreme rays, it might be interesting from a computational point
of view to generate other Benders inequalities, in particular metric inequalities. Our
computational results, presented in Sect. 4, confirm this observation.

A final remark is that one could certainly try to generate metric inequalities di-
rectly instead of generating Benders inequalities, then strengthening them to obtain
metric inequalities. Indeed, [9] have proposed a cutting plane algorithm based on
metric inequalities for a multicommodity capacitated network design problem. In
their algorithm, a heuristic method is used to generate violated metric inequalities.
In general, however, it is harder to derive violated metric inequalities than to obtain
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violated Benders inequalities, in which case a state-of-the-art linear programming
software package can be used to solve the multicommodity flow subproblem.

3 Cutset inequalities

In this section, we investigate the relationships between cutset inequalities and the
three other classes of inequalities defined in the introduction. We first show that cut-
set inequalities are a subclass of Benders inequalities. To this purpose, we need to
introduce, for any S ⊂ N , S �= ∅, the ray (π(S),α(S)) defined as follows:

πk
i (S) =

{
1, if i ∈ S,O(k) ∈ S and D(k) ∈ S, ∀i ∈ Nk, ∀k ∈ K,

0, otherwise,

αij (S) =
{

1, if i ∈ S and j ∈ S, ∀(i, j) ∈ A,

0, otherwise.

Proposition 3 For any S ⊂ N , S �= ∅, the cutset inequality associated to S corre-
sponds to the Benders inequality associated to the ray (π(S),α(S)).

Proof By definition of (π(S),α(S)), we have πk
D(k)(S) = 1 for each commodity k ∈

K(S,S) and αij (S) = 1 if and only if (i, j) ∈ (S,S) for each arc (i, j), which implies:

∑

k∈K

dkπ
k
D(k)(S) −

∑

(i,j)∈A

ωijαij (S) =
∑

k∈K(S,S)

dk −
∑

(i,j)∈(S,S)

ωij

= d(S,S) −
∑

(i,j)∈(S,S)

ωij .

The Benders inequality
∑

k∈K dkπ
k
D(k)(S) − ∑

(i,j)∈A ωijαij (S) ≤ 0 is thus equiva-
lent to the cutset inequality d(S,S) − ∑

(i,j)∈(S,S) ωij ≤ 0. �

In general, a cutset inequality is not necessarily a metric inequality (consequently,
it is not necessarily a Benders inequality associated to an extreme ray). The next
proposition gives a necessary and sufficient condition for a cutset inequality to be a
metric inequality.

Proposition 4 For any S ⊂ N , S �= ∅, the cutset inequality associated to S is a metric
inequality if and only if for each k ∈ K

(a) if O(k) ∈ S and D(k) ∈ S, there exists a path from O(k) to D(k) that crosses
(S,S) only once;

(b) if O(k) ∈ S or D(k) ∈ S, there exists a path from O(k) to D(k) that never crosses
(S,S).

Proof Assume we solve the shortest path problem associated to the distances α(S)

and obtain the shortest path lengths π(α(S)). By definition of α(S), for each k ∈ K ,
there are three possible outcomes:
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(1) πk
D(k)(α(S)) = 0, which means that there exists a path from O(k) to D(k) that

never crosses (S,S);
(2) πk

D(k)(α(S)) = 1, which means that there exists a path from O(k) to D(k) that

crosses (S,S) only once;
(3) πk

D(k)(α(S)) > 1, which means that there is no path from O(k) to D(k) that never

crosses (S,S) or that crosses (S,S) only once.

Now, let us assume that the cutset inequality associated to S ⊂ N , S �= ∅, is a
metric inequality. For any k ∈ K , we then have πk

D(k)(α(S)) = πk
D(k)(S), and

(a) if O(k) ∈ S and D(k) ∈ S, then, by definition of π(S), we have 1 = πk
D(k)

(S) =
πk

D(k)(α(S)), which implies that there exists a path from O(k) to D(k) that

crosses (S,S) only once;
(b) if O(k) ∈ S or D(k) ∈ S, then, by definition of π(S), we have 0 = πk

D(k)(S) =
πk

D(k)(α(S)), which implies that there exists a path from O(k) to D(k) that never

crosses (S,S).

Conversely, let us assume that, for each k ∈ K , we have either

(a) O(k) ∈ S and D(k) ∈ S, in which case there exists a path from O(k) to D(k)

that crosses (S,S) only once, which implies that πk
D(k)(α(S)) = 1 = πk

D(k)(S),
by definition of π(S); or

(b) O(k) ∈ S or D(k) ∈ S, in which case there exists a path from O(k) to D(k) that
never crosses (S,S), which implies πk

D(k)(α(S)) = 0 = πk
D(k)(S), by definition

of π(S).

Thus, for each k ∈ K , πk
D(k)(α(S)) = πk

D(k)(S), and the cutset inequality associ-
ated to S is a metric inequality. �

Example 2 Consider the network depicted in Fig. 2, with four nodes (1, 2, 3 and 4)
and 3 arcs ((1,2), (3,4) and (4,1)). There are two commodities, 1 and 2, with de-
mands d1 and d2, respectively, and O(1) = 4, O(2) = 3, D(1) = D(2) = 2.

Consider the cutset S = {1,3}. The subnetworks Gk = (Nk,Ak) for k = 1,2 are
shown in Fig. 3, along with the ray (π(S),α(S)) associated to S. For each commod-

Fig. 2 Network for
Example 2—4 nodes, 3 arcs and
2 commodities
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Fig. 3 Subnetworks for each
commodity and ray associated to
the cutset inequality for
Example 2

ity k, the value inside each node i corresponds to πk
i (S), while the value close to each

arc (i, j) is αij (S). This ray is associated to the Benders inequality ω12 + ω34 ≥ d2.
The length of the shortest path (with respect to α(S)) between O(2) and D(2) is

equal to 2. Moreover, even though neither O(1) nor D(1) are in set S, the shortest
path length between O(1) and D(1) is equal to 1. Therefore, strenghtening the cutset
inequality yields the metric inequality ω12 + ω34 ≥ d1 + 2d2, which dominates the
original cutset inequality.

The intuition behind this strenghtening is very simple. Observe that in Example 2
the only path between O(2) (∈S) and D(2) (∈S) must use more than one arc from
the cutset (in this case, arcs (3,4) and (1,2)), because it needs to reenter set S. There-
fore, π2

D(2)(α(S)) actually represents the number of times an arc crossing the cutset
has to be used in order for the commodity to leave its origin O(2) and reach its desti-
nation D(2). The cutset inequality does not take this information into account (as if a
single use of the cutset arcs would always be enough) and therefore presents a worse
estimation of the needed capacity. This strengthening also considers commodities for
which neither the origin nor the destination is in set S, but still need to use some
capacity across the cutset, as is the case for commodity 1.

A final remark on Example 2: it is interesting to note that the same metric inequal-
ity can be obtained as the sum of two cutset inequalities: one associated with S = {3},
which yields the inequality ω34 ≥ d2, and the other associated to S = {1,3,4}, which
yields the inequality ω12 ≥ d1 + d2. There are cases, however, in which one cannot
obtain the strengthened metric inequality by adding up cutset inequalities, as shown
in the next example.

Example 3 Consider the network of Example 2 with the addition of arc (3,2). Again,
we consider the cutset defined by S = {1,3}. The subnetworks for the two com-
modities and the ray associated to this cutset inequality are shown in Fig. 4. The
cutset inequality is ω12 + ω34 + ω32 ≥ d2. The strengthened metric inequality is
ω12 + ω34 + ω32 ≥ d1 + d2, which cannot be obtained as the sum of other cutset
inequalities. Note, however, that it is dominated by the cutset inequality associated to
S = {1,3,4}, which is ω12 + ω32 ≥ d1 + d2.

The last two examples show that strenghtened metric inequalities can be domi-
nated by other cutset inequalities. In spite of this fact, strenghtening cutset inequali-
ties is interesting, because solution algorithms usually make use of heuristic methods
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Fig. 4 Subnetworks for each
commodity and ray associated to
the cutset inequality for
Example 3

to generate cutset inequalities. Hence, they do not guarantee that the best cutsets are
generated. The proposed strenghtening can be useful in that context, as confirmed by
our computational experiments, reported in Sect. 4.1.

4 Computational results

To perform our computational experiments, we use instances of the multicommodity
capacitated fixed-charge network design problem (MCFND), for which several exact
and approximate solution algorithms have been proposed [7, 8, 10, 11, 13, 14, 16,
17, 20]. To each arc (i, j) ∈ A is associated a binary variable yij taking value 1 if
and only if the arc is chosen, and continuous variables xk

ij , k ∈ K , representing the

flow of commodity k on the arc. Parameters fij and ck
ij are, respectively, the fixed

cost for opening arc (i, j) and the variable cost associated with the flow of one unit
of commodity k through arc (i, j), while uij is the capacity of arc (i, j) when it is
open. With this notation, one can write the MCFND as follows:

Minimize
∑

(i,j)∈A

(
fij yij +

∑

k∈K

ck
ij x

k
ij

)
(10)

subject to

∑

j∈N+
i

xk
ij −

∑

j∈N−
i

xk
ji =

⎧
⎨

⎩

dk, i = O(k),

0, i /∈ {O(k),D(k)}, ∀i ∈ N, ∀k ∈ K,

−dk, i = D(k),

(11)

∑

k∈K

xk
ij ≤ uij yij , ∀(i, j) ∈ A, (12)

xk
ij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K, (13)

yij ∈ {0,1}, ∀(i, j) ∈ A. (14)

Our computational experiments are based on three sets of instances widely used
in the literature on the MCFND. These instances contain from 10 to 100 nodes,
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35 to 687 arcs and 10 to 400 commodities. They are described in detail by Gham-
louche, Crainic and Gendreau [14].

In the next subsection, we present results obtained on cutset inequalities gener-
ated by an enumeration of all cutsets, up to a limited cardinality. We are interested in
the proportion of cutset inequalities that are strenghtened, as well as by the improve-
ment obtained by the strenghtened metric inequalities. Subsequently, in Sect. 4.2, we
analyze the results obtained by a Benders algorithm applied to the MCFND. We in-
vestigate, in particular, the relative performance of three variants of the algorithm:
one that generates Benders inequalities associated to rays that are not necessarily ex-
treme; a second variant that generates only Benders inequalities associated to extreme
rays; and a third variant that generates Benders inequalities and strenghtens them to
obtain only metric inequalities.

4.1 Cutset inequalities

In the special case of cutset inequalities, we have considered for each instance all
sets S, with |S| ≤ � , � being an integer which depends on the number of nodes
in the graph (see Tables 1 and 2). All the associated cutsets have been gener-
ated and tested. In Table 1 the results are shown for the first group of instances
(group R), while Table 2 shows the results obtained for the third group (group C+).
For the second group (group C), considering sets with |S| ≤ 4, no cutset inequal-
ity has been strengthened. In the tables, for each instance, we show the following

Table 1 Effect of strengthening on cutset inequalities (group R)

Inst. (|N |, |A|, |K|) � Nb. cutsets Nb. strength Max strength (%) Avg strength (%)

R01.1 (10,35,10) 5 637 32 42.11 32.35

R02.1 (10,35,25) 5 637 76 34.97 19.41

R03.1 (10,35,50) 5 637 63 24.02 10.51

R04.1 (10,60,10) 5 637 0 − −
R05.1 (10,60,25) 5 637 0 − −
R06.1 (10,60,50) 5 637 0 − −
R07.1 (10,82,80) 5 637 0 − −
R08.1 (10,83,25) 5 637 0 − −
R09.1 (10,83,50) 5 637 0 − −
R10.1 (20,120,40) 5 6195 2 14.70 14.18

R11.1 (20,120,100) 5 6195 48 12.26 4.28

R12.1 (20,120,200) 5 6195 67 4.98 2.92

R13.1 (20,220,40) 5 6195 0 − −
R14.1 (20,220,100) 5 6195 0 − −
R15.1 (20,220,200) 5 6195 0 − −
R16.1 (20,314,40) 5 6195 0 − −
R17.1 (20,318,100) 5 6195 0 − −
R18.1 (20,315,200) 5 6195 0 − −
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information:

• (|N |, |A|, |K|)—number of nodes, arcs and commodities in the instance;
• �—maximum cardinality of the tested cutsets;
• Nb. cutsets—number of cutsets tested;
• Nb. strength—number of cutset inequalities that were strengthened;
• Max strength—the maximum strength obtained;
• Avg strength—the average strength considering all the strengthened inequalities;

where the strength is defined as [∑k∈K dkπk
D(k)

(α) − ∑
k∈K dkπ

k
D(k)

)]/∑
k∈K dk

πk
D(k)(α).

The results presented in Tables 1 and 2 indicate that the strengthening is only
effective for sparse graphs. This result was expected, since the higher the arc density,
the smaller the probability that the conditions given in Proposition 4 are satisfied.
Indeed, consider a subset S of the nodes of a complete graph, and its complement S.
If some commodity has its origin in S and its destination in S, it is always possible to
connect the origin to the destination by using a single arc across the cutset. Similarly,
if we consider a commodity with its origin in S or its destination in S, we can reach
the destination from the origin by an arc that does not cross the cutset. Thus, in the
case of a complete graph, strengthening cutset inequalities is useless, since they are
already metric inequalities.

4.2 Benders inequalities

We have developed a standard Benders decomposition algorithm which obtains val-
ues for the dual variables (α,π) by using a state-of-the-art linear programming soft-
ware package (CPLEX) to solve the multicommodity flow subproblem at each itera-
tion of the algorithm.

The Benders algorithm first relaxes all feasibility and optimality constraints in
the master problem. At each iteration, the relaxed master problem provides a lower
bound on the optimal solution value of the original problem and a solution y. These
variables define a tentative network, and are used in the dual subproblem.

In case the dual subproblem is unbounded, we obtain a ray (not necessarily ex-
treme) that can be used to generate a violated Benders inequality (also called a fea-
sibility cut). In case the dual subproblem is bounded, the conjunction of the master
problem and subproblem solutions is a feasible solution to the original problem (and
provides an upper bound). In this case, the extreme point corresponding to a dual op-
timal solution can be used to generate a so-called optimality cut. The process iterates
until the values of the lower and upper bounds coincide.

We have analyzed the number of iterations and the time it takes for this Benders
decomposition algorithm to find a first feasible solution. We compare these two fig-
ures with and without strengthening the feasibility cuts to obtain metric inequalities.
The number of iterations performed before a first feasible solution is found gives a
measure of how much we can strengthen the cuts. The comparison of the computation
time between the two cases is useful to determine if the time spent in strengthening
is rewarded by the gain in the strength of the cuts.
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In Tables 3–7, the following results are shown:

• With or Without strength—indicates the use (or not) of strengthening:
Nb. iter—number of iterations needed to find a first feasible solution;
Time (s)—time in seconds needed to find a first feasible solution;

• �= (%)— percentage difference between the equivalent columns with and without
strengthening;

• Strength info—information associated with strengthening:
Nb. strength—number of iterations where the cut was strengthened;
Max strength—maximum strength obtained (%);
Avg strength—average strength obtained (%).

Tables 3 and 4 show the results for the first group of instances. We see from these
tables that strenghtening the feasibility cuts not only reduces the number of itera-
tions needed to find a feasible solution for most instances, but also the time needed,
indicating that the time spent to solve the shortest path problem is rewarded by the
strengthening of the cuts. Note that, for each line in the tables, there is actually a set
of instances corresponding to the same network, but having different configurations
of fixed and variable costs [14]. In the tables, we present the average results.

The results for the second group of instances are presented in Tables 5 and 6. These
instances are harder than the first group. Indeed, for about half of these instances
(those in Table 6), the Benders algorithm could not find a single feasible solution in
the allowed computation time of five hours. Therefore, Table 6 does not compare the
difference between the total time to find a feasible solution, but the lower bound upon
termination. Although it is a different measure, the lower bounds are also relevant
since they somehow indicate the strength of the cuts.

For the instances in Table 5, a mean reduction of 22% in the computation time
needed to obtain the first feasible solution was obtained by using strengthening. The
results are consistent with those of the first group of instances and indicate that the
harder the problem, the more effective the strenghtening seems to be in reducing the
total computation time.

An interesting result is obtained in Table 6. In this case, the time limit of 5 hours
was not enough to obtain a single feasible solution. However, one observes that the
lower bounds obtained by the Benders decomposition algorithm using strengthening
were slightly better (mean increase of 4.13%) than those obtained without strenght-
ening. This indicates that the behavior is similar to the other two groups of instances.
Finally, Table 7 shows the results for the last group of instances. Again, these results
are similar to those for the other groups.

A final study concerns the relative strength of Benders inequalities and Benders
inequalities associated to extreme rays. It is common in the literature to use extreme
rays when solving problems by means of a Benders decomposition approach, since
they are believed to yield stronger cuts. When solving an unbounded subproblem
with CPLEX we had the option of obtaining an extreme ray or a ray (not necessarily
extreme). We tested both options on the first group of instances and the results are
summarized in Table 8.

These results somehow contradict what is commonly believed, since no clear an-
swer can be given to the question of which is the best option. Our belief is that,
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Table 6 Results for Benders inequalities (group C—time limit exceeded)

Instance Without strength With strength �= (%) Strength info

Nb. iter LB Nb. iter LB LB Nb. strength Max strength Avg strength

c49 849 3677.12 658 3658.39 −0.51 637 28.51 4.65

c50 1077 16381.4 766 16341.7 −0.24 736 32.41 4.65

c51 679 2895.79 549 2930.23 1.19 515 26.01 4.13

c52 760 17175.7 555 17320.2 0.84 529 26.76 4.62

c53 1061 10920.4 560 11977 9.68 553 78.01 11.56

c54 886 20131.3 472 21416.9 6.39 461 49.34 9.25

c55 769 11105.6 436 11956.4 7.66 423 78.92 8.30

c56 741 22470.3 421 24242.4 7.89 410 54.51 8.90

c57 388 2595.49 344 2676.2 3.11 317 24.44 4.59

c58 432 5140.63 347 5233.47 1.81 316 28.91 4.68

c59 501 2512.28 381 2538.63 1.05 352 27.53 3.80

c60 287 5271.1 236 5299.48 0.54 222 21.37 3.64

c61 690 8728.18 338 9245.4 5.93 314 63.75 13.24

c62 587 17684.2 317 19029.1 7.61 306 45.13 11.41

c63 628 8467.78 325 8988.69 6.15 310 49.36 9.33

c64 492 17317.9 264 18521.3 6.95 243 40.97 10.22

Mean 4.13 415.25 42.25 7.31

although the set of extreme rays is limited (and therefore, common sense would lead
us to believe that the associated Benders feasibility cuts are stronger), combining two
or more Benders feasibility cuts might sometimes be more effective in cutting the
feasible space.

5 Conclusion

In this paper, we clarified the relationships between three well-known classes of in-
equalities used in solution algorithms for multicommodity capacitated network de-
sign problems: Benders, metric and cutset inequalities. We have shown that Benders
inequalities associated to extreme rays are always metric, but that it can be interesting
to generate other Benders inequalities, and strengthen them to obtain metric inequal-
ities. This has been shown in particular on cutset inequalities, a subclass of Benders
inequalities, for which we have given a necessary and sufficient condition for them to
be metric inequalities. Computational results on a Benders decomposition algorithm
have shown that, for some instances, the time needed to find a first feasible solution
was reduced by more than 30% when strengthening Benders feasibility cuts to obtain
metric inequalities.

Our results are applicable not only in the context of solving the MCFND by a
Benders decomposition algorithm. In particular, as mentioned in the Introduction,
our theoretical results apply to any network design problem for which feasible solu-
tions can be obtained by solving multicommodity network flow subproblems. Also,
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Table 8 Effect of using Benders inequalities associated to extreme rays

Instance Benders inequalities Benders inequalities (extreme rays)

Nb. iter Time (s) Nb. iter Time (s)

R01 40.33 0.14 34.67 0.13

R02 44.17 0.24 40.00 0.24

R03 43.67 0.39 37.00 0.34

R04 32.44 0.15 32.89 0.17

R05 67.33 0.65 71.22 0.81

R06 72.33 1.32 64.56 1.26

R07 34.00 0.19 33.56 0.24

R08 81.89 1.15 73.56 1.15

R09 98.44 2.74 87.44 2.70

R10 225.11 11.59 202.56 14.58

R11 205.56 37.95 154.11 38.10

R12 143.22 38.00 116.89 33.45

R13 396.33 107.65 340.78 89.32

R14 581.33 441.89 694.11 782.58

R15 347.00 492.39 414.22 1760.19

R16 347.11 158.10 325.33 126.93

R17 963.44 1938.99 1413.00 5348.33

R18 638.78 2530.32 820.11 9646.16

the strengthening procedure to generate metric inequalities can be used in any al-
gorithm (for the MCFND or for any other network design problem) that alternates
between solving a relaxation, gradually improved by the addition of valid inequali-
ties, and restricted multicommodity flow subproblems. Evaluating the performance
of the strengthening procedure in this context constitutes an interesting avenue for
future research.
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